Slipped (CTG).(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies.
نویسندگان
چکیده
At least 15 human diseases have been associated with the length-dependent expansion of gene-specific (CTG).(CAG) repeats, including myotonic dystrophy (DM1) and spinocerebellar ataxia type 1 (SCA1). Repeat expansion is likely to involve unusual DNA structures. We have structurally characterized such DNA, with (CTG)(n).(CAG)(n) repeats of varying length (n=17-79), by high-resolution gel electrophoresis, and have probed their surfaces with anti-DNA antibodies of known specificities. We prepared homoduplex S-DNAs, which are (CTG)x.(CAG)y where x=y, and heteroduplex SI-DNAs, which are hybrids where x>y or x<y. S-DNAs formed many different species of slipped isomers, as indicated by its multiple electrophoretic species. In contrast, SI-DNAs formed distinct structures, as indicated by the limited electrophoretic species for all possible repeat length pairings. Sister SI-DNAs with an excess of CAG repeats always migrated slower than their sister SI-DNAs with an excess of CTG repeats. Strikingly, both the propensity to form slipped structures and the pattern of S-DNAs, but not SI-DNAs, varied for similar lengths of CTG/CAG repeats between the DM1 and SCA1 loci, highlighting a role for flanking cis-elements in S-DNA but not SI-DNA formation. Slipped structures bound structure and nucleotide-specific anti-DNA antibodies. Binding of anti-B-DNA antibodies was reduced for both S-DNAs and SI-DNAs relative to their linear forms. SI-DNAs bound anti-Z-DNA antibodies, while both S and SI-DNAs bound anti-cruciform antibodies, revealing shared characteristics between the corresponding DNA structures and slipped DNAs. Such features of the repeats may be recognized by cellular proteins known to bind such structures.
منابع مشابه
Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanne...
متن کاملDetection of Slipped-DNAs at the Trinucleotide Repeats of the Myotonic Dystrophy Type I Disease Locus in Patient Tissues
Slipped-strand DNAs, formed by out-of-register mispairing of repeat units on complementary strands, were proposed over 55 years ago as transient intermediates in repeat length mutations, hypothesized to cause at least 40 neurodegenerative diseases. While slipped-DNAs have been characterized in vitro, evidence of slipped-DNAs at an endogenous locus in biologically relevant tissues, where instabi...
متن کاملHuman MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
The expansion of trinucleotide repeat sequences is associated with several neurodegenerative diseases. The mechanism of this expansion is unknown but may involve slipped-strand structures where adjacent rather than perfect complementary sequences of a trinucleotide repeat become paired. Here, we have studied the interaction of the human mismatch repair protein MSH2 with slipped-strand structure...
متن کاملAlternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
Most models proposed to explain the disease-associated expansion of (CTG)n.(CAG)n and (CGG)n.(CCG)n trinucleotide repeats include the formation of slipped strand DNA structures during replication; however, physical evidence for these alternative DNA secondary structures has not been reported. Using cloned fragments from the myotonic dystrophy (DM) and fragile X syndrome (FRAXA) loci containing ...
متن کاملTriplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy
More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 332 3 شماره
صفحات -
تاریخ انتشار 2003